State Space Model of Structural Dynamics ---------------------------------------- .. figure:: figures/si_msmdof.png :alt: MDOF Structure MDOF Structure When an multiple degree-of-freedom (MDOF) system is subject to multiple support excitation, such as in the figure above, the displacement vector is extended to include the support DOF. An `equation of motion <#equation-of-motion>`__ is derived as follows. Begin by forming a partitioned equation of dynamic equilibrium for all the DOF: Partitioned Equation of Dynamic Equilibrium ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. math:: \begin{bmatrix} \mathbf{m} & \mathbf{m}_{g} \\ \mathbf{m}^T_{g} & \mathbf{m}_{gg} \end{bmatrix} \begin{bmatrix} \mathbf{\ddot{u}}^{t}_{f} \\ \mathbf{\ddot{u}}_{g} \end{bmatrix} + \begin{bmatrix} \mathbf{c} & \mathbf{c}_{g} \\ \mathbf{c}^T_{g} & \mathbf{c}_{gg} \end{bmatrix} \begin{bmatrix} \mathbf{\dot{u}}^{t}_{f} \\ \mathbf{\dot{u}}_{g} \end{bmatrix} + \begin{bmatrix} \mathbf{k} & \mathbf{k}_{g} \\ \mathbf{k}^T_{g} & \mathbf{k}_{gg} \end{bmatrix} \begin{bmatrix} \mathbf{u}^{t}_{f} \\ \mathbf{u}_{g} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{p}_{g} \end{bmatrix} where the subscript :math:`g` indicates support DOF, the subscript :math:`f` indicates structural DOF, and the superscript :math:`t` indicates the total of quasi-static (:math:`\mathbf{u}^{s}_{f}`, due to static application of support displacements) and dynamic (:math:`\mathbf{u}_{f}`, evaluated by dynamic analysis) structural displacements. Taking the first half of the partitioned equilibrium, separating the structural displacements (:math:`\mathbf{u}^{t}_{f}=\mathbf{u}^{s}_{f}+\mathbf{u}_{f}`), and moving all :math:`\mathbf{u}_{g}` and :math:`\mathbf{u}^{s}_{f}` terms to the right side, .. math:: \mathbf{m}\mathbf{\ddot{u}}_{f} + \mathbf{c}\mathbf{\dot{u}}_{f} + \mathbf{k}\mathbf{u}_{f} = -(\mathbf{m}\mathbf{\ddot{u}}^{s}_{f}+\mathbf{m}_{g}\mathbf{\ddot{u}}_{g}) -(\mathbf{c}\mathbf{\dot{u}}^{s}_{f}+\mathbf{c}_{g}\mathbf{\dot{u}}_{g}) -(\mathbf{k}\mathbf{u}^{s}_{f}+\mathbf{k}_{g}\mathbf{u}_{g}) The term :math:`(\mathbf{k}\mathbf{u}^{s}_{f}+\mathbf{k}_{g}\mathbf{u}_{g})=\mathbf{0}` due to static equilibrium, allowing the term to be dropped and giving :math:`\mathbf{u}^{s}_{f} = \mathbf{-k}^{-1}\mathbf{k}_{g}\mathbf{u}_{g} = \mathbf{\iota u}_{g}`; the term :math:`(\mathbf{c}\mathbf{\dot{u}}^{s}_{f}+\mathbf{c}_{g}\mathbf{\dot{u}}_{g})` is dropped because it is usually small relative to the inertia term; and the term :math:`\mathbf{m}_{g}\mathbf{\ddot{u}}_{g}` is dropped because mass is usually neglected at supports. The equilibrium equation thus simplifies. Equation of Motion ^^^^^^^^^^^^^^^^^^ .. math:: \begin{aligned} \mathbf{M\ddot{u}}_{f}(t) + \mathbf{Z\dot{u}}_{f}(t) + \mathbf{Ku}_{f}(t) &= -\mathbf{M\iota}\mathbf{\ddot{u}}_{g}(t) \\ \mathbf{m}\mathbf{\ddot{u}}_{f} + \mathbf{c}\mathbf{\dot{u}}_{f} + \mathbf{k}\mathbf{u}_{f} &= -\mathbf{m}\mathbf{\iota}\mathbf{\ddot{u}}_{g} \end{aligned} Hence, the following equation presents the continuous linear time-invariant (LTI) state-space representation of a structural system. Continuous LTI State-Space Representation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. math:: \begin{aligned} \mathbf{\dot{x}} &= \mathbf{A}_{c}\mathbf{x} + \mathbf{B}_{c}\mathbf{u} \\ \begin{bmatrix} \mathbf{\dot{u}}_{f}(t) \\ \mathbf{\ddot{u}}_{f}(t) \end{bmatrix} &= \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & -\mathbf{M}^{-1}\mathbf{Z} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{f}(t) \\ \mathbf{\dot{u}}_{f}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ -\mathbf{\iota} \end{bmatrix} \mathbf{\ddot{u}}_{g}(t) \\ \\ \mathbf{y} &= \mathbf{Cx} + \mathbf{Du} \\ \mathbf{\ddot{u}}_{f}(t) &= \begin{bmatrix} -\mathbf{M}^{-1}\mathbf{K} & -\mathbf{M}^{-1}\mathbf{Z} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{f}(t) \\ \mathbf{\dot{u}}_{f}(t) \end{bmatrix} + \begin{bmatrix} -\mathbf{\iota} \end{bmatrix} \mathbf{\ddot{u}}_{g}(t) \end{aligned} In order to move from the continuous to the discrete case, the coefficients :math:`\mathbf{A}_{c}` and :math:`\mathbf{B}_{c}` are transformed by solving the first-order differential equation with the signal’s value held constant between time steps (“zero-order hold method”). The coefficients :math:`\mathbf{C}` and :math:`\mathbf{D}` are unchanged. The results are shown in the following equation. .. figure:: figures/si_discretize.png :alt: Signal Discretization Signal Discretization Discrete LTI State-Space Representation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. math:: \begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Ax}_{k} + \mathbf{Bu}_{k} \\ \mathbf{y}_{k} &= \mathbf{Cx}_{k} + \mathbf{Du}_{k} \\ \end{aligned} .. math:: \mathbf{x}_{k} = \mathbf{x}(k\Delta t), \hspace{1cm} \mathbf{u}_{k} = \mathbf{u}(k\Delta t), \hspace{1cm} \mathbf{y}_{k} = \mathbf{y}(k\Delta t) .. math:: \mathbf{A} = e^{\mathbf{A}_{c}\Delta t}, \hspace{1cm} \mathbf{B} = \int_{0}^{\Delta t}{e^{\mathbf{A}_{c}\tau}}\mathbf{B}_{c}d\tau where: .. math:: \begin{aligned} \mathbf{A} & \text{: discrete state transition matrix} \\ \mathbf{B} & \text{: discrete input influence matrix} \\ \mathbf{C} & \text{: output influence matrix} \\ \mathbf{D} & \text{: direct transmission or feed-through matrix} \end{aligned}