mdof.markov module#

mdof.markov.okid(inputs, outputs, **options)#

Identify Markov parameters, or discrete impulse response data, for a given set of input and output data. Observer Kalman Identification Algorithm (OKID) [1].

Parameters:
  • inputs (array) – input time history. dimensions: \((q,nt)\), where \(q\) = number of inputs, and \(nt\) = number of timesteps

  • outputs (array) – output response history. dimensions: \((p,nt)\), where \(p\) = number of outputs, and \(nt\) = number of timesteps

  • m (float) – (optional) number of Markov parameters to compute, excluding timestep zero. default: \(\min(300, nt)\)

  • rcond – (optional) cut-off ratio for small singular values in pseudoinverse computation. default: 1e-15

Returns:

the Markov parameters, with dimensions \((p,q,m+1)\)

Return type:

array

References#