mdof.transform module#
- mdof.transform.power_transfer(inputs, outputs, step, **options)#
Power spectrum transfer function from input and output data.
- Parameters:
inputs (1D array) – input time history.
outputs (1D array) – output response history.
step (float) – timestep.
period_band (tuple) – (optional) minimum and maximum period of interest, in seconds.
- Returns:
(periods, amplitudes)
- Return type:
tuple of arrays
- mdof.transform.fourier_transfer(inputs, outputs, step, **options)#
Fourier spectrum transfer function from input and output data.
- Parameters:
inputs (1D array) – input time history.
outputs (1D array) – output response history.
step (float) – timestep.
period_band (tuple) – (optional) minimum and maximum period of interest, in seconds.
- Returns:
(periods, amplitudes)
- Return type:
tuple of arrays
- mdof.transform.response_transfer(inputs, outputs, step, **options)#
Response spectrum transfer function from input and output data.
- Parameters:
inputs (1D array) – input time history.
outputs (1D array) – output response history.
step (float) – timestep.
pseudo (bool) – (optional) if True, uses pseudo accelerations. default: False
period_band (tuple) – (optional) minimum and maximum period of interest, in seconds.
- Returns:
(periods, amplitudes)
- Return type:
tuple of arrays
- mdof.transform.fdd_spectrum(outputs, step, **options)#
Frequency Domain Decomposition spectrum [1] from output data.
- Parameters:
outputs (ND array.) – output response history. dimensions: \((p,nt)\), where \(p\) = number of outputs, and \(nt\) = number of timesteps
step (float) – timestep.
period_band (tuple) – (optional) minimum and maximum period of interest, in seconds.
- Returns:
(periods, amplitudes)
- Return type:
tuple of arrays
References#
- mdof.transform.fdd(outputs, step)#
Frequency Domain Decomposition [2] from output data.
- Parameters:
outputs (ND array.) – output response history. dimensions: \((p,nt)\), where \(p\) = number of outputs, and \(nt\) = number of timesteps
step (float) – timestep.
- Returns:
(frequencies,
`U`
,`S`
)- Return type:
tuple of arrays
References#
[2] Brincker, R., Zhang, L., & Andersen, P. (2001). Modal identification of output-only systems using frequency domain decomposition. Smart materials and structures, 10(3), 441. (https://doi.org/10.1088/0964-1726/10/3/303
- mdof.transform.power_spectrum(series, step, period_band=None, **options)#
Power spectrum of a signal, as a function of period (i.e., periodogram).
- Parameters:
series (1D array) – time series.
step (float) – timestep.
period_band (tuple) – (optional) minimum and maximum period of interest, in seconds.
- Returns:
(periods, amplitudes)
- Return type:
tuple of arrays.
- mdof.transform.fourier_spectrum(series, step, period_band=None, **options)#
Fourier amplitude spectrum of a signal, as a function of period.
- Parameters:
series (1D array) – time series.
step (float) – timestep.
period_band (tuple) – (optional) minimum and maximum period of interest, in seconds.
- Returns:
(periods, amplitudes)
- Return type:
tuple of arrays.